Knowledge-based Modeling in Dynamic Decision Making
نویسندگان
چکیده
A knowledge-based model that emulates human behavior in a Dynamic Decision Making task is proposed. The model, MAIDEN-DSF, uses a connectionist representation of knowledge and a value function to compute the best alternative. In order to validate MAIDEN-DSF, two data sets have been used: a training set and a test set that contain the behavior of participants that performed the task with different conditions. The results suggest that MAIDEN-DSF is a considerable framework in order to model human behavior. The aim of this paper is to use MAIDEN-DSF to prove that participants do not perceive delay conditions when dealing with Dynamic Decision Making tasks.
منابع مشابه
Computational modeling of dynamic decision making using connectionist networks
In this research connectionist modeling of decision making has been presented. Important areas for decision making in the brain are thalamus, prefrontal cortex and Amygdala. Connectionist modeling with 3 parts representative for these 3 areas is made based the result of Iowa Gambling Task. In many researches Iowa Gambling Task is used to study emotional decision making. In these kind of decisio...
متن کاملProbability Model of Decision Making for Successful Transplantation of Non-Cadaveric Organs (RESEARCH NOTE)
Mathematical modeling based on a probabilistic approach for making decisions for organ transplantation can be successfully employed in cases when the choice of decisions can affect the results produced. In this study, the minimum probability of success required for organ transplantion in case of multi-donors is determined. The governing equations are constructed in terms of probabilities and so...
متن کاملA new framework for high-technology project evaluation and project portfolio selection based on Pythagorean fuzzy WASPAS, MOORA and mathematical modeling
High-technology projects are known as tools that help achieving productive forces through scientific and technological knowledge. These knowledge-based projects are associated with high levels of risks and returns. The process of high-technology project and project portfolio selection has technical complexities and uncertainties. This paper presents a novel two-parted method of high-technology ...
متن کاملA DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملConsidering Uncertainty in Modeling Historical Knowledge
Simplifying and structuring qualitatively complex knowledge, quantifying it in a certain way to make it reusable and easily accessible are all aspects that are not new to historians. Computer science is currently approaching a solution to some of these problems, or at least making it easier to work with historical data. In this paper, we propose a historical knowledge representation model takin...
متن کامل